Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 516, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627315

RESUMO

This in vitro study evaluated the effects of the infiltration of F- and Ca2+ ions into human enamel by electrokinetic flow (EKF) on the enamel microhardness and F- content. Sound human enamel ground sections of unerupted third molars were infiltrated with de-ionized water by EKF and with F- ion by EKF respectively. All samples were submitted to two successive transverse acid-etch biopsies (etching times of 30 s and 20 min) to quantify F- ion infiltrated deep into enamel. Remarkably, sound enamel showed a large increase in microhardness (MH) after infiltration of NaF (p < 0.00001) and CaCl2 (p = 0.013) by EKF. Additionally, NaF-EKF increased the remineralization in the lesion body of artificial enamel caries lesions compared to controls (p < 0.01). With the enamel biopsy technique, at both etching times, more F- ions were found in the EKF-treated group than the control group (p << 0.05), and more fluoride was extracted from deeper biopsies in the NaF-EKF group. In conclusion, our results show that EKF treatment is superior in transporting Ca2+ and F- ions into sound enamel when compared to molecular diffusion, enhancing both the mineralization of sound enamel and the remineralization of artificial enamel caries.


Assuntos
Cariostáticos , Cárie Dentária , Humanos , Cariostáticos/farmacologia , Remineralização Dentária/métodos , Fluoretos/farmacologia , Projetos de Pesquisa , Esmalte Dentário , Fluoreto de Sódio
2.
Sci Rep ; 12(1): 18357, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319677

RESUMO

This investigation aimed to quantitatively measure the changes in inflammation of subjects with healthy and unhealthy gums during a period of induced gingivitis. A total of 30 subjects (15 healthy, 15 with gum inflammation) were enlisted and given oral exams by a dental hygienist. Baseline measurements were acquired before a 3-week period of oral hygiene abstinence. The lobene modified gingival index scoring was used for inflammation scoring and hyperspectral spatial frequency domain imaging was used to quantitatively measure oxy- and deoxygenated blood volume fraction at two time points: at Baseline and after 3 weeks of oral hygiene abstinence. We found that abstaining from oral hygiene causes a near proportional increase in oxygenated and deoxygenated blood volume fraction for healthy individuals. For individuals who started the study with mild to moderate gingivitis, increases in blood volume were mainly due to deoxygenated blood.


Assuntos
Gengivite , Humanos , Índice Periodontal , Inflamação/complicações , Índice de Placa Dentária
3.
Microorganisms ; 10(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36144293

RESUMO

An in situ study was conducted to examine the mode of action of a 0.454% stannous fluoride (SnF2)-containing dentifrice in controlling the composition and properties of oral biofilm. Thirteen generally healthy individuals participated in the study. Each participant wore an intra-oral appliance over a 48-h period to measure differences in the resulting biofilm's architecture, mechanical properties, and bacterial composition after using two different toothpaste products. In addition, metatranscriptomics analysis of supragingival plaque was conducted to identify the gene pathways influenced. The thickness and volume of the microcolonies formed when brushing with the SnF2 dentifrice were dramatically reduced compared to the control 0.76% sodium monofluorophosphate (MFP)-containing toothpaste. Similarly, the biophysical and nanomechanical properties measured by atomic force microscopy (AFM) demonstrated a significant reduction in biofilm adhesive properties. Metatranscriptomic analysis identified pathways associated with biofilm formation, cell adhesion, quorum sensing, and N-glycosylation that are significantly downregulated with SnF2. This study provides a clinically relevant snapshot of how the use of a stabilized, SnF2 toothpaste formulation can change the spatial organization, nanomechanical, and gene expression properties of bacterial communities.

4.
Biomed Opt Express ; 13(8): 4247-4260, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36032575

RESUMO

Due to rod-like hydroxyapatite crystal organizations, dental enamel is optically anisotropic, i.e., birefringent. Healthy enamel is known to be intrinsically negatively birefringent. However, when demineralization of enamel occurs, a considerable number of inter-crystallite spaces would be created between the crystallites in the enamel, which could lead to a sign reversion in birefringence of the enamel structure. We propose that this sign reversion can be leveraged in polarization sensitive OCT (PSOCT) imaging to differentiate early caries lesions from healthy enamel. In this study using PSOCT, we first confirm that the change in birefringence sign (negative to positive) can lead to a 90-degree alteration in the local axis orientation because of the switch between the fast and slow optic axes. We then demonstrate, for the first time, that the local axis orientation can be utilized to map and visualize the WSLs from the healthy enamel with a unique contrast. Moreover, the sharp alteration in local axis orientation gives a clear boundary between the WSLs and the healthy enamel, providing an opportunity to automatically segment the three-dimensional WSLs from the healthy enamel, enabling the characterization of their size and depth information in an intuitive way, which may aid clinical decision making and treatment planning.

5.
Biomed Opt Express ; 13(6): 3629-3646, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781964

RESUMO

There remains a clinical need for an accurate and non-invasive imaging tool for intraoral evaluation of dental conditions. Optical coherence tomography (OCT) is a potential candidate to meet this need, but the design of current OCT systems limits their utility in the intraoral examinations. The inclusion of light-induced autofluorescence (LIAF) can expedite the image collection process and provides a large field of view for viewing the condition of oral tissues. This study describes a novel LIAF-OCT system equipped with a handheld probe designed for intraoral examination of microstructural (via OCT) and microvascular information (via OCT angiography, OCTA). The handheld probe is optimized for use in clinical studies, maintaining the ability to detect and image changes in the condition of oral tissue (e.g., hard tissue damage, presence of dental restorations, plaque, and tooth stains). The real-time LIAF provides guidance for OCT imaging to achieve a field of view of approximately 6.9 mm × 7.8 mm, and a penetration depth of 1.5 mm to 3 mm depending on the scattering property of the target oral tissue. We demonstrate that the proposed system is successful in capturing reliable depth-resolved images from occlusal and palatal surfaces and offers added design features that can enhance its usability in clinical settings.

6.
J Biophotonics ; 14(12): e202100191, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34453488

RESUMO

Gingivitis is highly prevalent in adults, and if left untreated, can progress to periodontitis. In this article, we present an interesting case study where the resolution of gingivitis was followed over a period of 10 days using optical coherence tomography (OCT) and light-induced autofluorescence (LIAF). We demonstrate that OCT and its functional angiography can distinctively capture the changes during the resolution of gingivitis; while LIAF can detect red-fluorescent signals associated with mature plaque present at the inflamed site. The acute inflammatory region showed evidence of angiogenesis based on the quantification of vessel density and number; while no angiogenesis was detected within the less inflamed region. Gingival thickness showed a reduction of 140 ± 26 µm on average, measured between the peak gingivitis event and the period wherein the inflammation was resolved. Vessels in the angiogenesis site was found to reduce exponentially. The mildly inflamed site showed a decreasing trend in the vessel size, which however was within the error of the measurement.


Assuntos
Gengivite , Periodontite , Adulto , Angiografia , Gengiva , Gengivite/diagnóstico por imagem , Humanos , Tomografia de Coerência Óptica
7.
J Mech Behav Biomed Mater ; 108: 103799, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32469721

RESUMO

Tooth enamel has an important mechanical function for human dental health, yet characterizing its mechanical properties is not trivial due to its complex nanoporous structures. We examined the distribution of hardness and modulus across the lingual-buccal enamel cross-section by nanoindentation. At the occlusal surface, the hardness and modulus of enamel were found to be 5.00 ± 0.22 GPa and 97.12 ± 2.95 GPa, respectively. At the area close to the enamel-dentine-junction (EDJ), the hardness and modulus were 3.72 ± 0.35 GPa and 76.83 ± 5.71 GPa, respectively. At the middle region in between the EDJ and the outer enamel layer, the hardness and modulus were found to be 4.23 ± 0.18 GPa and 87.62 ± 2.50 GPa, respectively. The surface and area underneath the nanoindent were analyzed using the following microscopy tools: Scanning Electron Microscopy, Focused Ion Beam imaging, and Transmission Electron Microscopy. The deformation mechanisms of enamel were found to be location dependent and influenced by changes in the chemical composition within enamel. The EDJ forms the interface between enamel and dentin. The deformation behavior differed at the EDJ, due to the increased organic phase at the interface. Within the intermediate enamel region, intra-rod cracks were formed at the center of enamel rods and propagated into the neighboring inter-rod region at deviated directions along the orientation of the local crystallites. At the outer enamel layer, crack propagation was constrained by the rigid structure surrounding the indented site. Most of the cracks were formed close to the surface. A significant amount of material was also pushed upwards and delaminated from the enamel surface of the indentation area.


Assuntos
Esmalte Dentário , Dentina , Dureza , Humanos , Microscopia Eletrônica de Varredura
8.
J Biophotonics ; 13(7): e202000026, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32191393

RESUMO

We report the development of an integrated multifunctional imaging system capable of providing anatomical (optical coherence tomography, OCT), functional (OCT angiography, OCTA) and molecular imaging (light-induced autofluorescence, LIAF) for in vivo dental applications. Blue excitation light (405 nm) was used for LIAF imaging, while the OCT was powered by a 1310 nm swept laser source. A red-green-blue digital camera, with a 450 nm cut-on broadband optical filter, was used for LIAF detection. The exciting light source and camera were integrated directly with the OCT scanning probe. The integrated system used two noninvasive imaging modalities to improve the speed of in vivo OCT data collection and to better target the regions of interest. The newly designed system maintained the ability to detect differences between healthy and hypomineralized teeth, identify dental biofilm and visualize the microvasculature of gingival tissue. The development of the integrated OCT-LIAF system provides an opportunity to conduct clinical studies more efficiently, examining changes in oral conditions over time.


Assuntos
Angiografia , Tomografia de Coerência Óptica , Microvasos , Imagem Molecular , Imagem Multimodal
9.
J Bacteriol ; 198(19): 2651-61, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27161116

RESUMO

UNLABELLED: l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. IMPORTANCE: Dental caries is one of the most prevalent and costly infectious diseases worldwide, caused by a biofilm formed on tooth surfaces. Novel strategies that compromise the ability of virulent species to assemble and maintain pathogenic biofilms could be an effective alternative to conventional antimicrobials that indiscriminately kill other oral species, including commensal bacteria. l-Arginine at 1.5% has been shown to be clinically effective in modulating cariogenic biofilms via alkali production by arginolytic bacteria. Using a mixed-species ecological model, we show new mechanisms by which l-arginine disrupts the process of biofilm matrix assembly and the dynamic microbial interactions that are associated with cariogenic biofilm development, without impacting the bacterial viability. These results may aid in the development of enhanced methods to control biofilms using l-arginine.


Assuntos
Arginina/farmacologia , Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/metabolismo , Streptococcus mutans/metabolismo , Biomassa , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Polissacarídeos Bacterianos/química , Streptococcus gordonii/fisiologia , Streptococcus mutans/efeitos dos fármacos
10.
RSC Adv ; 4(90): 49053-49060, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25419457

RESUMO

Inspired by the fact that certain natural proteins, e.g. casein phosphopeptide or amelogenin, are able to prevent tooth erosion (mineral loss) and to enhance tooth remineralization, a synthetic amphiphilic diblock copolymer, containing a hydrophilic methacryloyloxyethyl phosphate block (MOEP) and a hydrophobic methyl methacrylate block (MMA), was designed as a novel non-fluoride agent to prevent tooth erosion under acidic conditions. The structure of the polymer, synthesized by reversible addition-fragment transfer (RAFT) polymerization, was confirmed by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). While the hydrophilic PMOEP block within the amphiphilic block copolymer strongly binds to the enamel surface, the PMMA block forms a hydrophobic shell to prevent acid attack on tooth enamel, thus preventing/reducing acid erosion. The polymer treatment not only effectively decreased the mineral loss of hydroxyapatite (HAP) by 36-46% compared to the untreated control, but also protected the surface morphology of the enamel specimen following exposure to acid. Additionally, experimental results confirmed that low pH values and high polymer concentrations facilitate polymer binding. Thus, the preliminary data suggests that this new amphiphilic diblock copolymer has the potential to be used as a non-fluoride ingredient for mouth-rinse or toothpaste to prevent/reduce tooth erosion.

11.
Microbiology (Reading) ; 160(Pt 7): 1466-1473, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24763427

RESUMO

A major aetiological factor of dental caries is the pathology of the dental plaque biofilms. The amino acid L-arginine (Arg) is found naturally in saliva as a free molecule or as a part of salivary peptides and proteins. Plaque bacteria metabolize Arg to produce alkali and neutralize glycolytic acids, promoting a less cariogenous oral microbiome. Here, we explored an alternative and complementary mechanism of action of Arg using atomic force microscopy. The nanomechanical properties of Streptococcus mutans biofilm extracellular matrix were characterized under physiological buffer conditions. We report the effect of Arg on the adhesive behaviour and structural properties of extracellular polysaccharides in S. mutans biofilms. High-resolution imaging of biofilm surfaces can reveal additional structural information on bacterial cells embedded within the surrounding extracellular matrix. A dense extracellular matrix was observed in biofilms without Arg compared to those grown in the presence of Arg. S. mutans biofilms grown in the presence of Arg could influence the production and/or composition of extracellular membrane glucans and thereby affect their adhesion properties. Our results suggest that the presence of Arg in the oral cavity could influence the adhesion properties of S. mutans to the tooth surface.


Assuntos
Arginina/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Streptococcus mutans/efeitos dos fármacos , Cárie Dentária/microbiologia , Placa Dentária/microbiologia , Placa Dentária/ultraestrutura , Matriz Extracelular/ultraestrutura , Glucanos/metabolismo , Microscopia de Força Atômica , Boca , Polissacarídeos Bacterianos/metabolismo , Saliva/microbiologia , Streptococcus mutans/fisiologia , Streptococcus mutans/ultraestrutura
12.
Am J Dent ; 23 Spec No A: 14A-19A, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-21284247

RESUMO

PURPOSE: To ascertain the mode of action of a new Pro-Argin formula desensitizing dentifrice with a gentle whitening benefit containing 8.0% arginine, a high cleaning calcium carbonate system and sodium monofluorophosphate, utilizing a range of state-of-the-art surface techniques. METHODS: Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were used to assess tubule occlusion. Electron spectroscopy for chemical analysis (ESCA) was used to identify the composition of the occlusive material. CLSM was also used to identify the location of the arginine within the occluded dentin tubule and to demonstrate the resistance of the occlusion to an acid challenge. RESULTS: The CLSM and SEM studies demonstrated that the arginine-calcium carbonate technology in this new Pro-Argin formula sensitivity dentifrice was highly effective in occluding dentin tubules. ESCA showed that the dentin surface deposit contained high levels of calcium, phosphorous, oxygen and carbonate. CLSM also confirmed that the arginine incorporated into the dentin plug, and the dentin plug resisted an acid challenge.


Assuntos
Dentifrícios/farmacologia , Dessensibilizantes Dentinários/farmacologia , Dentina/ultraestrutura , Arginina , Carbonato de Cálcio , Dentifrícios/química , Líquido Dentinal/fisiologia , Fluoretos , Humanos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Fosfatos , Espectroscopia Fotoeletrônica , Remineralização Dentária
13.
Skin Res Technol ; 12(3): 162-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16827690

RESUMO

BACKGROUND: Near-infrared (NIR) spectroscopy was used to document the skin water content as a function of product usage and changes in the % relative humidity (%RH) in vitro and in vivo. The objective of the investigation was to determine if the NIR could provide comparable skin water content information as that obtained using gravimetric, conductivity, or visual assessment methods without having to invoke complex chemometric calculations. METHODS: NIR data were obtained using an NIR5000 spectrophotometer with a fiber optic probe (Smartprobe) attachment to complete the clinical studies and a Direct Contact Analyzer module to carry out the in vitro experiments. Conductivity measurements were completed using the Skicon 200, which measures conductance at a fixed frequency of 3.5 MHz. Three moisturization-based clinical studies were carried out assessing the NIR's ability to detect skin hydration changes. In Clinical Study A, NIR and Skicon data were collected for panelists who had only washed their outer calf with water over a 4-week period. During this time, the daily average %RH was recorded. In Clinical Study B, 10% solutions of glycerin, choline chloride, and the sodium salt of pyrrolidone carboxylic acid were applied to the panelist's outer calf and biophysical measurements were completed to assess the hydration and desorption properties of these humectants. In Clinical Study C, a 10% solution of choline chloride was applied to panelist's outer calf and the cumulative effect of using this product was evaluated over a 3-week period. For all in vitro studies, porcine skin was used as the substrate. RESULTS: Comparable NIR, Skicon, and visual dryness results were obtained for most of the product usage-based clinical experiments completed. However, the NIR was particularly more effective at detecting skin water content differences as a function of %RH changes. In the absence of abrupt (>50%) relative humidity variations, there was a direct correlation between the NIR readings and the %RH (R(2)=0.83) unlike what was observed for the Skicon measurements (R(2)=0.22). CONCLUSIONS: NIR spectroscopy demonstrated the changes in the skin water content as a function of product usage; the results were consistent with those obtained using the Skicon conductivity meter and visual dryness assessment scores. More importantly, the differences detected were obtained without having to use chemometric manipulations in the data analysis as is the common practice. Of all the methods used, the NIR gave the best linear regression for %RH-induced skin water content changes.


Assuntos
Higiene da Pele/métodos , Pele/efeitos da radiação , Espectrofotometria Infravermelho , Animais , Água Corporal/metabolismo , Colina/farmacologia , Umidade , Modelos Animais , Fenômenos Fisiológicos da Pele , Suínos
14.
Skin Res Technol ; 12(1): 36-42, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16420537

RESUMO

BACKGROUND: Maintaining an adequate skin moisture balance is important for retaining soft, pliable, healthy-looking skin. This report describes the use of the dynamic vapor sorption (DVS) meter to quantify water content of skin in vitro under a variety of conditions. It is the only instrument that couples an ultra-sensitive Cahn microbalance (resolution=0.1 microg) with an environmental system where both humidity and temperature are controlled. This feature is important since the skin's water content is influenced by changes in the relative humidity. METHOD: In every experiment, the temperature was held constant at 25 degrees C, and the starting relative humidity (RH) was set to 0% RH. The RH was programmed to step in 10% increments ending at 90% RH. The RH was incremented to the next level only when the mass change was less than 0.005%/min. RESULTS: A hysteresis was observed for all skin sorption/desorption experiments completed. Glycerin and the sodium salt of pyrrolidone carboxylic acid (NaPCA) both enhanced the % water content of skin. NaPCA was a more effective humectant at high relative humidities (above 60% RH); while glycerin performed better at humidities below 40% RH. Washing the skin with sodium lauryl sulfate (SLS) reduced the skin's ability to absorb water more so than washing with Tween 80, a milder surfactant. Vaseline petroleum jelly enhanced the water-retention properties of untreated skin. CONCLUSIONS: The DVS can effectively be used to study the sorption and desorption properties of skin. We have shown that the amount of water absorbed is influenced by the RH, the presence of humectants and/or occlusive agents, and surfactant harshness.


Assuntos
Água Corporal/metabolismo , Gases/análise , Absorção Cutânea/fisiologia , Pele/metabolismo , Água/análise , Absorção , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Técnicas In Vitro , Suínos , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...